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SUMMARY 
A pressure-smoothing schcme for Stokes and Navier-Stokes flows of Newtonian fluids and for Stokes flow 
of Maxwell fluids is described. The stress deviator obtained from the calculated velocity field is substituted 
into the governing equilibrium equation. The resulting equation is then solved to obtain a new, smoothed 
pressure by a least square finite element method. 
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INTRODUCTION 

For finite element analyses of flow problems, it is often desirable to obtain accurate pressure 
fields. As an example, in polymer processing it is necessary to have particularly accurate 
pressures in order to predict conditions of the final product and also in order to design the 
processing equipment. 

The pressure is determined by the continuity condition for incompressible flow and is often 
approximated with discontinuous functions. The penalty formulation may also be used, but this 
results in the elimination of the pressure from the finite element equations. Several smoothing 
schemes are available to obtain the pressure at the nodes used for velocity spe~ification.'-~ These 
include the method of expressing the equilibrium and continuity equations with Poisson's 
equation and solving for the pressure. 

The method described in this study uses the stress deviator for smoothing the pressure. If we 
substitute the stress deviator for the stress in the equilibrium equation, the resulting equation has 
only the pressure as a variable. To this equation in pressure, a least square finite element method 
is applied. The linear set of finite element equations obtained is then easily solved for a smooth 
pressure. 

GOVERNING EQUATIONS 

We first present the governing equations for steady state incompressible Stokes and 
Navier-Stokes flows of Newtonian fluids and for Stokes flow of Maxwell fluids, in rectangular 
Cartesian co-ordinates. 

027 1-209 1 f 89 fO50557- 1 1$05.50 
0 1989 by John Wiley & Sons, Ltd. 

Received 19 November 1986 
Revised 29 July 1988 



558 T. SHIOJIMA AND Y. SHIMAZAKI 

The equation of motion in terms of stress is 

6.. l J , J  , + p x ,  = p u j u i , j  (1) 

When creeping flows are under consideration, the right-hand side of equation (1) becomes zero. 

u. . = &.. = 0 

The continuity equation (incompressible flow) is 

(2)  1.1 11 

and the constitutive relationships are 

(3) 
1 

E~~ = -oij (Newtonian fluid), 
2P 

&.. = --a!. 1 +--a'.. l v  (Maxwell fluid), 
IJ 2P lJ 2G lJ 

where 
-a!.= g . . + p & .  

& i j  = &Ai, j + uj, i ) ,  

w.. i j  = '(u 2 j , i  - ui, j ) ,  

p = -30 . .  11' 

1J 1J 1J' 

V d'= t J  u k o i j , k - g & m k j -  a i k w k i ,  

The boundary conditions are: 

ui = Ui on S,,  

vjoij  = on S, ,  
- 

oij = Oij on S ,  (Maxwell fluid only). 

(4) 

Here oij is the stress, p is the density, X i  is the body force per unit volume, u, is the velocity, E , ~  is 
the strain rate, p is the viscosity, G is the shear modulus of elasticity, p is the pressure, tii is the 
specified velocity on S,,  is the specified traction on S, with unit outward normal vector vj, and 
Cij is the specified stress on S,. 

SOLUTION ALGORITHM FOR PRESSURE 

The algorithm for the pressure-smoothing scheme is shown in Figure 1. We first solve the 
equilibrium and continuity equations for velocity. In this step the penalty function formulation is 
used for the Navier-Stokes problem with a Newton-Raphson scheme. For Stokes flow of 
Newtonian and Maxwell fluids we use the velocity-pressure formulation. 

After the velocity and pressure fields have been obtained, we next calculate the stress deviator 
using the constitutive equation (3) or (4). The standard Galerkin method is applied for Newtonian 
fluids. For Maxwell fluids a least square type of finite element method is used in order to eliminate 
oscillations in the stress deviator field.' Because the constitutive equation of the Maxwell fluid is 
non-linear with respect to the stress deviator, iterations between equations (l), (2)  and equation (4) 
are performed until convergence is achieved. The details of the algorithm used for this analysis 
can be found in References 8-1 1. 
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E q u a t i o n s  ( 1 )  a n d  (2) 

1 S o l v e  

E q u a t i o n  (3) o r  (4) 
f o r  s t r e s s  d e v i a t o r  

I 

C o n s i d e r  1 aij = a: - p 6 i j  1 
So 1 v e  

E q u a t i o n  ( 1 )  
f o r  p r e s s u r e  

6 
Figure 1. Solution algorithm for pressure 

In order to obtain an equation for the pressure, we substitute the stress deviator into equation 
(1). Because the stressdeviator is known, the stress can be expressed in terms of the pressure using 
equation (5).  The least square finite element method is applied to the pressure equation obtained. 

FINITE ELEMENT METHOD 

We now outline the finite element method applied to flows of Newtonian and Maxwell fluids. 
Further details are shown in References 5 and 8. 

The finite element approximations for velocity, pressure and stress deviator fields arc taken as 

ui z Nauai, 

P 22 MlPl, 
oij z L,aiij. 

Finite element method for velocity 

Stokesflow of Newtonian and h.Jxwellfluids. Galerkin’s method appliec. to equations (1 )  and 
ives us 

P 
(2) g’ 

N, j c ( U k b i j . k  - U f k U k j -  CjkWki)dV 

(16) - j v  Na,j6ijpdo- 



560 T. SHIOJIMA A N D  Y. SHIMAZAKI 

and 

ju M,Eiidu = 0. (17) 

If now the finite element approximations of equations (13), (14) and (15) are substituted in 
equations (16) and (17), the following simultaneous equations are obtained: 

where K ,  represents the coefficients obtained from the first integral in equation (16), K ,  from the 
second integral, G from the third integral as well as in equation (17), and F ,  represents the 
coefficients obtained from the last two integrals in equation (16). The K, coefficients represent 
the non-linear terms introduced by the inclusion of the elastic strain rates and are non-symmetric. 
The U coefficients are the vector components of the nodal velocities and the p coefficients are the 
pressures. 

For Newtonian fluids the second integral of equation (16) can be eliminated; in other words, the 
K ,  matrix does not appear in equation (18). 

Six-node triangular isoparametric elements are used for approximating velocity and three-node 
elements with discontinuous linear approximations are used for pressure. 

Naoier-Stokesjlow. In order to analyse Navier-Stokes flows, the penalty function formulation 
is incorporated in place of the pressure. Galerkin's method applied to equations (1) and (2) with 
weighting functions the same as the approximating functions gives us Iu N,, j2p~i jd~  - N,pUjui, du + Iu Nu, j6ijhktdU - Is. N, Ti ds - ju N,pXidu = 0, (20) 

where I is the penalty number. If the finite element approximation of equation (13) is substituted 
in equation (20), we have 

where K , ,  C,(u), K4 and F ,  represent the coefficients from the first and second integrals in 
equation (20), from the third integral and the last two integrals respectively. 

When the Newton-Raphson scheme is used for solving equation (21), an incremental form may 
be written as 

CK31 {durn + 1 1 + [C,(urn)I {Aunt + 1 1 = {J'z I - CCKJ {urn> + [Cl (urn)] {~rn)I, (22) 

(23) urn + 1 = Urn + A U m +  1 ,  

where [C,(u,)] {Au,+ , }  represents the derivative of the second term in equation (21) which can 
be written as 

n f  

(n: number of elements). 

A four-node approximation is used for velocity. For this approximation, the 2 x 2 
Gauss-Legendre integration rule has been employed except for the third integral in equation (20). 
A one-point reduced integration is performed for the third integral which involves the penalty 
number. 
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Finite element method for stress deviator 

MaxwellJuidJow. The least square method applied to equation (4) gives us 

Substitution of equation (15) for the stress deviator in equation (25) gives us 

C C I ( 4  = { E r n } ,  (26) 
where K: represents the coefficients obtained from the first integral of equation (25) and Em 
represents the coefficients from the second integral. The cr' terms are components of the nodal 
stress deviator. A three-node approximation for the stress deviator is used. 

Newtonian Juid pow.  Galerkin's method applied to equation (3) gives us 1" L,o:,idv - ju L,2pcIjdv = 0. 

Substitution of equation (15) for the stress deviator in equation (27) gives us 

CK:l{a'} = {EN}, (28) 
where KY represents the coefficients obtained from the first integral of equation (27) and E" 
represents the coefficients from the second integral. We note that equation (27) can also be 
obtained when p / G  of equation (25) becomes zero. A three-node approximation is used for Stokes 
flow and a four-node approximation for Navier-Stokes flow. 

Finite element method for pressure 

to the nodal points, we may use a Galerkin finite element method simply by solving 
In order to transform discontinuous pressures, which appear in the third term of equation (18), 

where { p * >  will be the nodal point pressure values and the p on the right-hand side is the 
discontinuous pressure obtained. 

For the penalty function formulation we first calculate element pressures for the equation 

p = - A€,,. (30) 

The pressure fields can be smoothed without considering the discontinuous pressures obtained 

We now describe the pressure-smoothing scheme using the stress deviator. When the stress 

We then transform the values obtained to the nodal points by equation (29). 

from equations (18) and (19) or the penalty number. 

found from equation ( 5 )  is substituted in equation (l) ,  we have 

p u p , , ,  - 06 + 6,,p, j - p x ,  = 0. (31) 
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Substituting the finite element approximation, equation (14), into equation (3 1) and considering 
the velocity and the stress deviator as constants, the least square finite element method gives us 

dikMp,k(p~j~i, j - aij, j + 6ijM,, j p ,  - pXi)dUe = 0. (32) 
e =  i 6. 

In matrix notation we have 

[&I {PI = {F3  I, (33) 

where 

= GijMg,iM,,jd~e, 
e = l  v g  

(34) 

EXAMPLE PROBLEMS 

We now use the above formulation to solve Stokes and Navier-Stokes flows of Newtonian fluids 
and Stokes flow of a Maxwell fluid. 

Stokes flow of Newtonian fluid 

As an example of the Stokes flow problem, the flow through an L-shaped channel is analysed. 
Figure 2 shows the geometry and the finite element mesh, and also shows the velocity distribution 
obtained from equations (1 8) and (19). Figure 3 shows the calculated pressure distributions. The 
solid line represents the pressures obtained by the present method and the dotted line by equation 
(29). It is clear that the pressures are smoothed by equation (32). On the other hand, equation (29) 
gives poor results. 

t I D  

____________L._,,, ? . . -- - - ___I___.. , , . . 
--.-.-.44-4444-.--.--- - - I  . . . . 
, , . . . . . . . . . . . . . . . . . . . . . , . . . 

Figure 2. Stokes flow problem (L-shaped channel): (a) geometry and finite element mesh; (b) velocity distribution 
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Figure 3. Pressure distribution of the L-shaped channel --------,equation (29); -, present method; (a) pressure along 
A-B-C; (b) pressure along flow E-F 

Naoier-Stokes pow of Newtonian j u i d  

In order to test the algorithm, we first solve the Poiseuille flow problem shown in Figure 4. The 
smoothed pressure distribution with the present method is plotted in Figure 5. The penalty 
number 1 = 1.0 x lo6 is chosen in this analysis. 

For the next example, the driven cavity problem shown in Figure 6 is solved. The computed 
pressure contours with the present method for R,  = 400 are shown in Figure 7. The results agree 
well with those obtained by Yang and Atluri? 

Figure 4. Navier-Stokes flow problem (Poiseuille flow); Re = 1.0; (a) geometry and finite element mesh; (b) velocity 
distribution 
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Figure 5. Pressure distribution of the Poiseuille flow; 1 = 1.0 x lo6 
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(a) (b) 

Figure 6. Navier-Stokes flow problem (cavity flow); Re = 400; (a) geometry and finite element mesh; (b) velocity 
distribution 

Maxwell fluid flow 

The last example analysed for the comparison of equation (29) and the present method is the 
rolling of an elasto-visco-plastic slab shown in Figure 8. The rollers are assumed to rotate at a 
constant angular velocity and to exhibit a no-slip interface with the slab. The upper symmetrical 
half of the slab is analyzed. Detailed discussion of this problem is given by Shimazaki and 
Shiojima.* 

The pressure distributions along the centreline and the surface of the slab are plotted in 
Figures 9 and 10 respectively. From the figures, it is observed that the solutions obtained by 
equation (29) tend to exhibit larger pressure values than those obtained by the present method. 
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Figure 7. Pressure distribution of the cavity flow 

R / 

Figure 8. Maxwell fluid problem (rolling of an elasto-vim-plastic slab); geometry and finite element mesh 

Along the surface, equation (29) leads to a spurious oscillation of the pressure in the vicinity of the 
roller exit. On the other hand, the present method has generally smoothed the pressures. 

CONCLUSIONS 

The pressure equation obtained from the equilibrium equation, in which the velocity and the 
stress deviator are considered constant, was solved by the finite element method as a simple and 
efficient pressure-smoothing scheme. 

A comparison was made for Stokes and Navier-Stokes flows of Newtonian fluids and for 
Stokes flow of a Maxwell fluid between the present method and the method using the discontin- 
uous pressure, which is calculated by the velocity-pressure formulation of the finite element 
method. It was shown that the present scheme generally smoothed the pressure field accurately. 
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-I0* -15. t 
Figure 9. Pressure distribution along the centreline; unit = pQ (pR/G = 0.08) 

Figure 10. Pressure distribution along the surface; unit = @ fpQ/G = 008) 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge Professor H. Daiguji, Tohoku University, for his helpful 
discussions. We are also grateful to Professor E.G. Thompson, Colorado State University, for his 
valuable advice to complete this paper. 



PRESSURE-SMOOTHING SCHEME 567 

REFERENCES 

1.  R. L. Lee, P. M. Gresho and R. L. Sani, ‘Smoothing techniques for certain primitive variable solutions of the 
Navier-Stokes equations’, Int. j .  numer. methods eng., 14, 1785-1804 (1979). 

2. R. L. Sani, P. M. Gresho, R. L. Lee and D. F. Griffiths, ‘The cause and cure (?) of the spurious pressures generated by 
certain FEM solutions of the incompressible Navier-Stokes equations: Part l’, Int. j. numer. methodsjuids., 1, 1743  
(1981). 

3. C. T. Yang and S. Atluri, ‘An “assumed deviatoric stress-pressure-velocity’’ mixed finite element method for unsteady, 
convective, incompressible viscous flow: Part I: Theoretical Development’, Int. j. numer. methods Juids., 3, 377-398 

4. C. T. Yang and S. Atluri, ‘An “assumed deviatoric stress-pressure-velocity’’ mixed finite element method for unsteady, 
convective, incompressible viscous flow: Part 11: Computational studies’, Int .  j .  numer. methodsJuids., 4 ,4349  (1984). 

5. T. J. R. Hughes, W. K. Liu and A. Brooks, ‘Review of finite element analysis of incompressible viscous flows by the 
penalty function formulation’, J .  Comput. Phys., 30, 1-60 (1979). 

6. N. Kikuchi, J. T. Oden and Y. J. Song, ‘Convergence of modified penalty methods and smoothing scheme of pressure 
of Stokes flow problems’, Finite Elements in Fluids, Vol. 5, 1984, Chapter 4. 

7. M. Engleman, R. L. Sani, P. M. Gresho and M. Bercovier, ‘Consistent vs reduced integration penalty methods for 
incompressible media using several old and new elements’, lnt. j. numer. methodsJuids, 18, 2 5 4 2  (1982). 

8. Y. Shimazaki and T. Shiojima, ‘Elastic strain Effects during steady-state rolling of visco-elastic slabs’, Int .  j. numer. 
methods eng., 24, 1659-1669 (1987). 

9. Y. Shimazaki and E. G. Thompson, ‘Elasto-visco-plastic Flow with special attention to boundary conditions’, Int. j .  
numer. methods eng., 17, 97-112 (1981). 

10. E. G. Thompson and H. M. Berman, ‘Steady-state analysis of elasto-viscoplastic flow during rolling’, Numerical 
Analysis of Forming Processes, Wiley, 1984, Chapter 9. 

1 1 .  T. Shiojima and Y. Shimazaki, ‘Analyses of steady-state visco-elastic fluids using the penalty function method’, 1nt.j .  
numer. methods eng., 25, 43-54 (1988). 

(1983). 


